Relating path coverings to vertex labellings with a condition at distance two

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Labeling planar graphs with a condition at distance two

Department of Mathematical Analysis, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75 Prague, Czech Republic. E-mail: [email protected]. Department of AppliedMathematics, Faculty of Mathematics and Physics, Charles University, Malostranské náměstı́ 25, 118 00 Prague, Czech Republic. E-mail: [email protected]. Institute for Mathematics, Technical University B...

متن کامل

Graph coverings and graph labellings

Regular coverings of a graph or a map admit descriptions in terms of certain group-valued labellings on the graph. Controlling the properties of graphs resulting from such coverings requires to develop a certain type of ‘labelling calculus’. We give a brief outline of the related theory and survey the most important results.

متن کامل

Labeling graphs with a condition at distance two

The problem arises from the channel assignment problem. An L(2, 1)-labeling of a graph G = (V,E) is a function f : V → {0, 1, 2, . . .} such that |f(x) − f(y)| ≤ 2 if d(x, y) = 2 and |f(x) − f(y)| ≤ 1 if d(x, y) = 2. The span of an L(2, 1)-labeling is the maximum value f(x) among all vertices x in V . The L(2, 1)-labeling number of G, denoted by λ(G) is the minimum span of an L(2, 1)-labeling. ...

متن کامل

Labeling trees with a condition at distance two

An L(h, k)-labeling of a graph G is an integer labeling of vertices of G, such that adjacent vertices have labels which differ by at least h, and vertices at distance two have labels which differ by at least k. The span of an L(h, k)-labeling is the difference between the largest and the smallest label. We investigate L(h, k)-labelings of trees of maximum degree ∆, seeking those with small span...

متن کامل

Distance-two labellings of Hamming graphs

Let j ≥ k ≥ 0 be integers. An `-L(j, k)-labelling of a graph G = (V , E) is a mapping φ : V → {0, 1, 2, . . . , `} such that |φ(u)−φ(v)| ≥ j if u, v are adjacent and |φ(u)−φ(v)| ≥ k if they are distance two apart. Let λj,k(G) be the smallest integer ` such that G admits an `-L(j, k)-labelling. Define λj,k(G) to be the smallest ` if G admits an `-L(j, k)-labelling with φ(V ) = {0, 1, 2, . . . , ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1994

ISSN: 0012-365X

DOI: 10.1016/0012-365x(93)e0098-o